Articles → NLP → Word Embeddings In NLP

Word Embeddings In NLP






What Are N-Dimensional Vectors?







What Is The Dense Vector?





What Are Word Embeddings?





Example


import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from collections import defaultdict
import numpy as np

# Download required resources
nltk.download('punkt')
nltk.download('stopwords')

# Sample text
text = "The cat sat on the mat. The dog barked at the cat. The cat ran away."

# Tokenize and clean
tokens = word_tokenize(text.lower())
tokens = [word for word in tokens if word.isalpha() and word not in stopwords.words('english')]

# Build vocabulary
vocab = list(set(tokens))
vocab_index = {word: i for i, word in enumerate(vocab)}

# Create co-occurrence matrix
window_size = 2
co_matrix = np.zeros((len(vocab), len(vocab)))

for i, word in enumerate(tokens):
    word_idx = vocab_index[word]
    for j in range(max(0, i - window_size), min(len(tokens), i + window_size + 1)):
        if i != j:
            neighbor = tokens[j]
            neighbor_idx = vocab_index[neighbor]
            co_matrix[word_idx][neighbor_idx] += 1

# Display matrix
print("Vocabulary:", vocab)
print("Co-occurrence Matrix:\n", co_matrix)



Output


Picture showing the output of word embeddings in NLP





Posted By  -  Karan Gupta
 
Posted On  -  Friday, November 21, 2025

Query/Feedback


Your Email Id
 
Subject
 
Query/FeedbackCharacters remaining 250