Articles → MACHINE LEARNING → Confusion Matrix In Machine Learning

Confusion Matrix In Machine Learning






Purpose





Confusion Matrix


Total Population = P + NPredicted: PositivePredicted: Negative
Actual: PositiveTrue Positive (TP)False Negative (FN)
Actual: NegativeFalse Positive (FP)True Negative (TN)




OutcomeDescription
True Positive (TP)The actual classification is positive, and the predicted classification is also positive.
False Negative (FN)The actual classification is positive, and the predicted classification is negative.
False Positive (FP)The actual classification is negative, and the predicted classification is positive.
True Negative (TN)The actual classification is negative, and the predicted classification is negative.



Example






Predicted: SpamPredicted: Not Spam
Actual: Spam35 (TP)5 (FN)
Actual: Not Spam10 (FP)50 (TN)



Classification Accuracy




Picture showing the fomula for Classification Accuracy




35+50/35+50+10+5 = 85/100 = 0.85



Posted By  -  Karan Gupta
 
Posted On  -  Monday, June 9, 2025
 
Updated On  -  Thursday, December 18, 2025

Query/Feedback


Your Email Id
 
Subject
 
Query/FeedbackCharacters remaining 250