Articles → MACHINE LEARNING → Confusion Matrix In Machine Learning

Confusion Matrix In Machine Learning






Purpose





Confusion Matrix


Predicted: PositivePredicted: Negative
Actual: PositiveTrue Positive (TP)False Negative (FN)
Predicted: NegativeFalse Positive (FP)True Negative (TN)


  1. True Positive (TP): Model correctly predicted positive.
  2. False Positive (FP): Model incorrectly predicted positive (also called Type I error).
  3. True Negative (TN): Model correctly predicted negative.
  4. False Negative (FN): Model incorrectly predicted negative (Type II error).



Classification Accuracy




Picture showing the fomula for Classification Accuracy



Posted By  -  Karan Gupta
 
Posted On  -  Monday, June 9, 2025
 
Updated On  -  Monday, June 16, 2025

Query/Feedback


Your Email Id
 
Subject
 
Query/FeedbackCharacters remaining 250